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I. INTRODUCTION

A large number of useful methods have been proposed to
construct soliton solutions and locally coherent structure so-
lutions for nonlinear partial differential equations. Some of
the most important methods are the inverse scattering trans-
formation �IST� �1�, the bilinear form �2�, symmetry reduc-
tion �3�, the Darboux transformation �DT� �5�, the Painlevé
analysis method �4�, the Bäcklund transformation �6�, the
separated variable method �7�, etc. The DT is one of the most
powerful methods for constructing multisoliton and localized
coherent structure solutions of nonlinear integrable equations
in both 1+1 and 2+1 dimensions, such as the Korteweg–de
Vries �KdV� equation, the Kadomtsev-Petviashvili equation,
the Davey-Stewartson equation, the Nizhnik-Novikov-
Veselov equation, and other integrable systems �5,8–12�.
These DTs are based on the existence of Lax pairs which
encode the nonlinear equations under consideration in the
form of their compatibility conditions. The DT is a purely
algebraic method which can be iterated step by step to gen-
erate infinitely many solutions �nontrivial� with the simplest
�trivial� seed solution of the Lax pair.

It is well known that the KdV equation has N-soliton so-
lutions and can be used to model overtaking collisions of
water waves. But it is not a good model to describe the
reflection of water waves on a vertical wall. In Ref. �13�, sets
of three nonlinear long-wave equations �Wu-Zhang equa-
tions� of the Boussinesq class for modeling nonlinear and
dispersive long gravity waves traveling in two horizontal di-
rections on shallow water were derived. For example, in the
�1+1�-dimensional case, the equations are

�t + ��1 + ����x +
1

4
�xxx = 0,

�t + ��x + �x = 0, �1.1�

derived by the scaling transformations
�3
2 x→x and

�3
2 t→ t of

the coordinate variables �x , t�, where � is the surface velocity
of the water wave and � is the wave elevation. The system

�1.1� has a Lax pair. In fact, we can have another form of the
system �1.1�:

vt +
3

2
vvx − ux = 0,

ut +
1

2
vux + uvx −

1

4
vxxx = 0, �1.2�

whose Lax pair is

�xx = ��2 + �v + u�� , �1.3�

�t =
1

4
vx� + �� −

1

2
v��x, �1.4�

obtained by the transformation

� = v,
1

4
�2 − � − 1 =

1

4
v2 − � − 1 = u . �1.5�

Bidirectional soliton solutions, multisoliton solutions, and
periodic wave solutions of the �1+1�-dimensional Wu-Zhang
�WZ� system are indirectly constructed by the Painlevé
analysis method and the DT, by transforming the WZ system
�1.1� into the Broer-Kaup �BK� equations and the Ablowitz-
Kaup-Newell-Segur �AKNS� system �14–16�. In this paper,
we try to directly get bidirectional soliton solutions of the
WZ system �1.2� by the DT.

Another interesting system is the following two-
component generalization of the well-known two-component
Camassa-Holm �2CH� system which was derived by Liu and
Zhang �17�:

ms + Umy + 2mUy − ��y = 0,

�s + ��U�y = 0 �1.6�

obtained by the deformation of bi-Hamiltonian structures of
hydrodynamic type, where m=U−Uyy + 1

2�. Under the con-
straint �=0, the system �1.6� is reduced to the celebrated
Camassa-Holm equation �18�
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Us + �Uy − Uyys + 3UUy = 2UyUyy , �1.7�

which describes the fluid velocity of a shallow water wave in
the y direction. The Camassa-Holm equation �1.7� is com-
pletely integrable because it has most of the integrable fea-
tures �such as the Lax pair, the bi-Hamiltonian structure,
solvability by the inverse scattering approach, etc.� of a non-
linear partial different equation �18–20�. Although multikink
and peak-on solutions for the system �1.6� have been derived
by Chen �16�, the bilinear form of �1.6� has been constructed
by Falqui �22�, and multisoliton solutions have been obtained
by changing �1.6� into the first negative flow of the AKNS
hierarchy �23�, there has been scarcely any investigation of
the 2CH system �1.6�. We try to get multisoliton solutions of
�1.6� by DTs from the following Lax pair of the 2CH system
�1.6�:

�yy + �−
1

4
+ m� − �2��� = 0,

�s = − � 1

2�
+ U��y +

Uy

2
� . �1.8�

In order to investigate the solutions and integrability of the
2CH system �1.6�, it is important that the system be trans-
formed to a new form by the reciprocal transformation

dx = � dy − �u ds, dt = ds .

The new form of the system �1.6� is

wx + vt = 0, �1.9�

2ut + wvx + 2vwx = 0, �1.10�

2wux + 4uwx − wxxx = 0, �1.11�

and its Lax pair is correspondingly rewritten as

�xx = ��2 + �v + u�� , �1.12�

�t =
wx

4�
� −

w

2�
�x, �1.13�

in which

w = �, v = −
m

w2 , u =
1

4w2 +
wxx

2w
−

wx
2

4w2 . �1.14�

It is obvious that �1.12� is completely the same as �1.3�. This
equation is referred to as a linear Schrödinger equation with
an energy-dependent potential �i.e., the potential �v+u is
dependent on the energy ��. When the potential functions u
and v depend only on the variable x, this spectral problem
has been investigated by the inverse scattering method �24�
and the Bäcklund transformation �25�. More general energy-
dependent Schrödinger operators were studied using Miura
maps �26�, and infinite families of completely integrable
nonlinear Hamiltonian equations have been derived for
Schrödinger spectral problems �27�. Recently, two types of
DT have been obtained, and abundant solutions for the ei-
genvalue problem �1.3� �or �1.12�� using different potential
functions u and v �28�.

In the present paper, we give two types of Darboux trans-
formation for the WZ equation �1.2� and the 2CH system
�1.6� in Sec. II. In Sec. III, we find a single-loop solution, a
two-loop solution, and multisoliton�like� solutions of the
two-component Camassa-Holm system �1.6� by applying the
DTs and investigate the properties of multisoliton propaga-
tion. In Sec. IV, we focus on investigating bidirectional two-
soliton solutions and two-soliton head-on and overtaking col-
lisions for the �1+1�-dimensional WZ equation using the
Darboux transformations. Finally, we conclude the paper in
Sec. V.

II. DARBOUX TRANSFORMATIONS

In order to study the Darboux transformations for the
spectral problem �1.3� and �1.12�, first we rewrite Eq. �1.3�
�or �1.12�� in the following matrix form:

	x = M	, 	 = ��x,��T,

M = �0 �2 + �v + u

1 0
� , �2.1�

and consider a Darboux transformation

	̄ = T	 , �2.2�

in which T satisfies

Tx + TM = M̄T . �2.3�

The spectral problem is now written

	̄x = M̄	̄; �2.4�

here M̄ has the same form as M except that v and u are
replaced by v1 and u1. It is clear that v1,u1 is a solution of
�1.2� and �1.9�–�1.11�. According to the form of M, we sup-
pose that T has the following form:

T = ��a1 + a0 �2b2 + �b1 + b0

c0 �d1 + d0
� , �2.5�

where a0, a1, b0, b1, b2, c0, d0, and d1 are all undetermined
functions with respect to the variables x and t.

Inserting �2.5�, M, and M̄ into �2.3�, we obtain
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��2b2 + �b1 + b0 − ��2 + �v1 + u1�c0 ��a1 + a0���2 + �v + u� − ��2 + �v1 + u1���d1 + d0�
�d1 + d0 − �a1 − a0 c0��2 + �v + u� − �2b2 − �b1 − b0

�
+ ��a1x + a0x �2b2x + �b1x + b0x

c0x �d1x + d0x
� = 0. �2.6�

Because � is a parameter, the coefficients of � j �j
=3,2 ,1 ,0� in every matrix element are equal to zero. Omit-
ting the calculation for obtaining the DTs, we give them
directly.

Proposition 1. If �u ,v� �or �u ,v ,w�� is a known solution
of the system �1.2� �or the system �1.9�–�1.11�� and c0 and d0
have the forms

d0 = − �hx

h
− �1�c0, c0 =

1
�2hx/h − 2�1 − v

, �2.7�

then there is a Darboux transformation

�̄ = c0�x + �d0 − �c0�� , �2.8�

and �ū , v̄� �or �ū , v̄ , w̄�� is also a solution of the system �1.2�
�or �1.9�–�1.11��,

ū = u +
2d0x + c0xx

c0
, �2.9�

v̄ = v −
2c0x

c0
, �2.10�

�w̄ = w +
2c0t

c0
�; �2.11�

here the relation for w̄ is only for the system �1.9�–�1.11�.
Proposition 2. If �u ,v� �or �u ,v ,w�� is a known solution

of the system �1.2� �or �1.9�–�1.11��, and c0 and d0 have the
forms

d0 = − �hx

h
+ �1�c0, c0 =

1
�− 2hx/h − 2�1 − v

,

�2.12�

then there is a Darboux transformation

�̄ = c0�x + �d0 + �c0�� , �2.13�

and �ū , v̄� �or �ū , v̄ , w̄�� is also a solution of the system �1.2�
�or �1.9�–�1.11��,

ū = u +
2d0x + c0xx

c0
, �2.14�

v̄ = v +
2c0x

c0
, �2.15�

�w̄ = w −
2c0t

c0
� , �2.16�

where h in �2.7� and �2.12� satisfies

hxx = ��1
2 + �1v + u�h , �2.17�

and the Lax pair Eq. �1.4� for the WZ equation �or �1.13� for
the 2CH system� with �=�1. Finally, additional solutions of
the �1+1�-dimensional equation �1.1� and the 2CH system
�1.6� can be obtained via the DTs and the corresponding
transformations �1.5� and �1.14�.

III. MULTISOLITON SOLUTIONS OF THE 2CH SYSTEM

According to the Darboux theorem, we can obtain differ-
ent types of soliton solutions for the 2CH system �1.9�–�1.11�
by two types of Darboux transformations and taking different
seed solutions. Then, the solutions of the 2CH equation �1.6�
with respect to the variables �x , t� give

��x,t� = w,U�x,t� = − vw2 − w�xt
2 �ln w� −

�

2
, �3.1�

via the multisoliton solutions v and w of �1.9�–�1.11�. In
principle, the solutions � and U of the 2CH system �1.6� with
respect to the variables �y ,s� are obtained by the reciprocal
transformation

y =� dx

��x,t�
+� U�x,t�dt, s = t . �3.2�

A. The multisoliton solutions for the first DT

Selecting the seed solution of the system �1.9�–�1.11� in
the general form v0, w0 �w0�0�, and u0=1 / �4w0

2�, and in-
serting the seed solution into �2.17� and �1.12�, we get

h = cosh 
1, � = cosh 
 , �3.3�

and the one-soliton-like wave solutions for �1.9�–�1.11� are

v1 = v0 +
− 8k1

2�1
2 sech2 
1

2�1 + v0 − 4k1�1 tanh 
1
,
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w1 = w0 +
2�1 + v0 + 4k1�1 tanh 
1 − 4k1

2�1 sech2 
1

2�1 + v0 − 4k1�1 tanh 
1
,

�3.4�

where


1 = k1�2�1x − w0t�, k1 =
�4w0

2�1
2 + 4v0w0

2�1 + 1

4w0�1
,

and the function u1 can be obtained from

u1 =
1

4w1
2 +

w1xx

2w1
−

w1x
2

4w1
2 .

The single-soliton-like solution of the system �1.6� is ob-
tained with respect to the variables �x , t� from �3.1� as

�1�x,t� = w1,

U1�x,t� =
w0

2

G
	− v0�256�1k1

4 + 96�1
2k1

2�v0 + 2�1�2 + �v0 + 2�1�2� + 16v0�1k1�v0 + 2�1��16�1
2k1

2 + 4�1
2 + 4v0�1 + v0

2�tanh 
1

+ 4k1
2�1�− 384k1

4�v0 + 2�1� + 8k1
2�16�1

3 + 52�1
2v0 + 12�1v0

2 − v0
3� + �v0 + 2�1�2�4�1

2 + 32�1v0 + 3v0
2��sech2 
1

+ 16k1
3�1

2�128k1
4�1

3 + 8k1
2�1�8�1

2 + 6v0�1 + 3v0
2� − �v0 + 2�1��12�1

2 + 40�1v0 + 9v0
2��tanh 
1 sech2 
1

+ 64k1
4�3�k1

2�48�1
2 + 24v0�1� − 12�1

2 − 28�1v0 − 9v0
2�sech4 
1 − 256�1

4k1
5�8�1k1

2 − 2�1 − 3v0�tanh 
1 sech2 
1
 −
�

2
.

�3.5�

Here

G = �v0 + 2�1 − 4k1�1 tanh 
1 − 4�1k1
2 sech2 
1�

��v0 + 2�1 − 4k1�1 tanh 
1�3.

The corresponding Darboux transformation �1 is

�1 =
w0��1 − � − 2k1�1 tanh 
1�cosh 
 + 2k2� sinh 


�w0�4k1�1 tanh 
1 − 2�1 − v0�
, �3.6�

where v0, w0, and �1 are constants that satisfy 4w0
2�1

2+4v0w0
2�1+1�0. Actually, due to the good properties of the Darboux

transformation, the function �1 with �=�1 in �3.6� is just the function h1 that satisfies the following spectral equation:

h1xx = ��2
2 + �2v1 + u1�h1. �3.7�

By applying the DT �n+1� times, we can obtain the multisolitonlike solution of the system �1.9�–�1.11� and the corresponding
solution of the 2CH system �1.6�,

vn+1 = vn +
− 2hnxxhn + 2hnx

2 + vnxhn
2

hn�− 2hnx + 2�n+1hn + vnhn�
, �3.8�

wn+1 =
2wnhnx

2 − 2�wnx + 2�n+1wn�hnhnx + �wnxx − 2wnun + 2�n+1wn + 2�n+1wnx�hn

�n+1��2�n+1 + vn�hn − 2hnx�hn
, �3.9�

and

�n+1�x,t� = wn+1,

Un+1�x,t� =
2wnCnxCntt + 2�Cnxt + Cnwnx�Cntt

Cn�Cnwn + 2Cnt�
−

2Cnxtt

Cn
− wnxt −

�

2
+

2�6vnwn − wnx�Cnt
2 − 2�wnt + 6wn

2�
Cn�Cnwn + 2Cnt�

+
4�Cnt + wnCn�CntCnxt + 8vnCnCnt

3

Cn
2�Cnw1 + 2Cnt�

+
2wntCnxt − 2wn

3C2x + 6vnwnCnt

Cnwn + 2Cnt
+

�wnxwnt + vnwn
3�Cn

Cnwn + 2Cnt
, �3.10�
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where

Cn =
1

�2hnx/hn − 2�n+1 − vn

, n = 1,2,3, . . . ,

and hn is just the function �n of �2.8� obtained by applying
the DT n times. Nevertheless, the multisoliton solutions �3.8�
and �3.10� are functions with respect to the new variables x
and t only, and not the original variables y and s. In order to
obtain the multisoliton solutions of the 2CH system �1.6�, we
have to get the relation of the variables �y ,s� to the variables
�x , t�. It is difficult to get this relation directly from �3.2�
because complicated functions of � and U for multisoliton
solutions are included in �3.2�. Fortunately, there is a simple
way to obtain the relation of the variables �y ,s� to the vari-
ables �x , t� from �1.9�. We suppose that

w = Ht, v = − Hx, �3.11�

where H is a function with respect to the variables x and t.
So for H,

H =� w dt −� v dx ,

and it must satisfy

Htt − Ht
2Hxxtt + HtHttHxxt + HtHxtHxtt + Hxt

2 Htt + Ht
4Hxx

+ 2HxHt
3Hxt = 0. �3.12�

It is easy to get the function H from �1.10�, �1.11�, and
�3.11�. For example, we know the functions w1 and v1,

w1 = w = w0 + 2�ln C1�t, v1 = v = v0 − 2�ln C1�x,

and

H1 = H = − v0x + w0t + 2 ln C1 �3.13�

from �3.11� when the DT is applied once, and

y = H1

which was proved in Ref. �21�. Similarly, we can obtain

y = Hn = H = − v0x + w0t + 2 ln�C1C2 ¯ Cn� , �3.14�

when the DT is applied n times.
In principle, we can obtain single- and multisolitonlike

solutions U�y ,s� and ��y ,s� of the 2CH equation �1.6� from
�3.8�, �3.10�, and �3.14�. When we select h=cosh 
1 and �
=sinh 
2 for the DT of � in �2.17� and �2.8�, we have

v1 = v0 −
8k1

2�1
2 sech2 
1

v0 + 2�1 − 4k1�1 tanh 
1
,

w1 = w0 −
4k1

2�1w0 sech2 
1

v0 + 2�1 − 4k1�1 tanh 
1
,

and

h1 =
2k2�2 cosh 
2 + ��1 − �2 − 2k1�1 tanh 
1�sinh 
2

�4k1�1 tanh 
1 − v0 − 2�1

.

Taking n=1 in �3.6�–�3.8� and substituting the above func-
tions into �3.8� and �3.12�, we get the two-loop soliton solu-

tion of the function �2 with respect to y and s. As we know,
the loop soliton of the 2CH system is first found. In Fig. 1,
we plot the single-soliton solution and a two-loop soliton
solution of � and U of the 2CH system �1.6� with respect to
the variables �y ,s�. There is a loop soliton solution of �1 and

y
K 5 K 4 K 3 K 2 K 1

r 1

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

( a )

y

K 2 0 K 1 0 0 1 0 2 0 3 0

U
1

K 1 . 2 0

K 1 . 1 9

K 1 . 1 8

K 1 . 1 7

( b )

y

K 4 0 K 3 0 K 2 0 K 1 0

r 2

K 3

K 2

K 1

0

1

( c )

FIG. 1. �Color online� Single-soliton-like solution for �1 and
U1 �3.5� with respect to y �3.14� and s when v0=−1.15, w0=2, �1

=−1, �=0, t=−2; and the two-loop soliton for �2 �3.10� when v0

=−1.2, w0=1, �1=−1, �2=−2.0, t=−25. �a� �1, �b� U1, and �c� �2.
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a soliton of U in Figs. 1�a� and 1�b�. Figure 1�c� shows the
two-loop soliton solution of �2�y ,s�. In Fig. 2, the two-kink
form evolves to the two-soliton form for the solution of w2
while the two-soliton-like form evolves to the two-soliton
form for the solution of v2. The interaction of the two-kink
�or two-soliton-like� solution is not an elastic collision. How-
ever, in Fig. 3, the interactions of the two-soliton solutions of
w2 and v2 are elastic. The properties of the interaction for the
multisoliton solutions are different for the different seed so-
lutions v0 and w0.

B. The soliton solutions for the second Darboux
transformation

As for the first Darboux transformation for the two-
component CH equation �1.6�, we can obtain multisoliton
solutions of �1.6� by the second DT. Here, we only write the
single-soliton solution of �1.6� with respect to the variables x
and t:

�1�x,t� =
w0�v0 + 2�1 + 4k1�1 tanh 
1 − 4�1k1

2 sech2 
1�
v0 + 2�1 + 4k1�1 tanh 
1

,

�3.15�

U1�x,t� = −
�

2
+

w0
2

G1
„v0�32k1

2�2�8k1
2�1

2 + 12�1
2 + 12v0�1 + 3v0

2� + �2�1 + v0�4� + 16v0k1�1�2�1 + v0��16k1
2�1

2 + �2�1 + v0�2�tanh 
1

+ 	4�1k1
2�384k1

4�1
3�v0 + 2�1� − 8�1�16�1

3 + 52v0�1
2 − v0

3 + 12v0
2�1�k1

2 − �4�1
2 + 32v0�1 + 3v0

2��2�1 + v0�2�

+ 16k1
3�1

2�128k1
4�1

3 + 8�1�8�1
2 + 3v0

2 + 6�1v0�k1
2 − �2�1 + v0��9v0

2 + 40�1v0 + 12�1
2��tanh 
1
sech2 
1

− 	64�1
3k1

4�24�1k1
2�2�1 + v0� − 28�1v0 − 9v0

2 − 12�1
2� + 256�1

4k1
5�8k1

2�1 − 2�1 − 3v0�tanh 
1
sech4 
1… . �3.16�

Here

G1 = �v0 + 2�1 + 4k1�1 tanh 
1�3�4k1
2�1 sech2 
1

− 4k1�1 tanh 
1 − v0 − 2�1� .

IV. THE BIDIRECTIONAL SOLITONS OF THE
„1+1…-DIMENSIONAL WZ EQUATION

We can get many multisoliton solutions for the
�1+1�-dimensional WZ equation �1.2� by using the two DTs
and selecting different seed solutions for �1.2�. Here, we
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FIG. 2. Evolution of the two-soliton-like waves w2 and v2 in
�3.8� and �3.9� with v0=1.2, w0=1, �1=1.5, �2=−1.8. �a� w2 and
�b� v2.
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FIG. 3. Evolution of the two-soliton waves w2 and v2 in �3.8�
and �3.9� with v0=1.5, w0=1, �1=1.6, �2=−1.8. �a� w2 and �b� v2.
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focus only on investigating the bidirectional soliton solutions
of �1.2� because these solitons can be used to study water
waves during coastal and harbor design. We can directly get
bidirectional multisoliton solutions of �1.2� via the DT,
whereas Zhang and Li �14� had to modify the WZ equation
to AKNS to obtain bidirectional solitons. We discuss only the
bidirectional solitons of �1.2� obtained by the first DT. Se-
lecting the seed solution of �1.2� as u=−1, v=0, which is
consistent with the condition for the propagation of water
waves �14�, and taking

h = cosh 
1, � = cosh 
 ,


1 = k1�x + �1t�, k1 = ��1
2 − 1, ��1� � 1, �4.1�

�
 has the same form as 
1 except for replacing �1 with ��,
the functions c0 and d0 can be obtained from �2.7�. So the
one-soliton solution of the system �1.2� is given by �2.9� and
�2.10�:

v1 =
k1

2 sech2 
1

k1 tanh 
1 − �1
,

u1 =
4�1�4�1

2 − 3� − 4k1�4�1
2 − 1�tanh 
1 + 8�1k1

2��1
2 − 2�sech2 
1 − 7�1k1

4 sech2 
1

4�k1 tanh 
1 − �1�3 −
�4�2�1

2 − 1� − 3k1
2 sech2 
1�tanh 
1 sech2 
1

4�k1 tanh 
1 − �1�3 .

�4.2�

Finally, the single-soliton solutions of the �1+1�-dimensional WZ equation �1.1� have

�1 = v1,

�1 =
2k1

2�1�1 − 2�1
2 + 2k1�1 tanh 
1�sech2 
1 + k1

4�3�1 − k1 tanh 
1�sech4 
1

�k1 tanh 
1 − �1�3 . �4.3�

When the DT is applied twice, the two-soliton solutions of the WZ system �1.1� are obtained:

�2 =
2h1x�− h1x + v1h1� + �v1x − 2�2

2 + v1
2 − 2u1�h1

2

h1�− 2h1x + 2�2h1 + v1h1�
, �4.4�

�2 = −
h1

2v1x
2 + 2h1�2�2 + v1��2�2

2 + 2�2v1 + v1
2 − 2u1 − 4�h1x

2�− 2h1x + 2�2h1 + v1h1�2 +
h1���2

2 + 6�2v1 + v1
2 + 4u1�h1 − 4h1x��2 + v1��v1x

2�− 2h1x + 2�2h1 + v1h1�2

+
h1�v1xx − 2u1x�

2�− 2h1x + 2�2h1 + v1h1�
−

2h1x
2 �h1x

2 − �2�2 + v1�h1h1x + 2h1
2�

h1
2�− 2h1x + 2�2h1 + v1h1�2

+
��4�2 + v1�2 − 4�v1

2 + 16�2v1��2
2 − u1 − 1� − 8u1�2�2

2 + u1� + 8�2��2
2 − 2�

4�− 2h1x + 2�2h1 + v1h1�2 . �4.5�

In order to illustrate that the solutions �2 and �2 are two-
soliton solutions of the WZ equation �1.1�, we show the evo-
lution of the two-soliton solution �2 with �1=−1.5, �2

=1.25 in Fig. 4. This interaction of two solitons is a head-on
collision.

As we know, the WZ equation �1.1� allows bidirectional
water wave interaction. It is important to obtain the

two-soliton solution that can express an overtaking collision.
We do not obtain the two-soliton overtaking solution
from �4.4� and �4.5� by selecting �1,2�1 �or �1,2−1�.
Therefore, we need to select another solution of h in �2.17� in
order to get the two-soliton overtaking solution of the WZ
equation �1.1�. We take h and � in �2.17� and �1.3� as
follows:
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h =
11

2
cosh 
1 − 2 sinh 
1, � = − cosh 
 + 3 sinh 
 ,

�4.6�

and obtain the single-soliton solution of the system �1.2� as

v1 =
105k1

2 sech2 
1

�11 − 4 tanh 
1��− 4k1 − 11�1 + �11k1 + 4�1�tanh 
1�
,

�4.7�

x
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z 2
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FIG. 4. �Color online� Evolution of the two-soliton head-on col-
lision for �2 �4.5� with �1=−1.5 and �2=1.25: �a� t=−6, �b� t=0.5,
and �c� t=6.
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FIG. 5. �Color online� Evolution of the two-soliton overtaking
collision for �2 �4.4� with �4.7�–�4.9� and �1=−1.2 and �2=−1.5:
�a� t=−30, �b� t=−0.75, �c� t=3, and �d� t=25.
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u1 =
�0 + �1 tanh 
1 + �2 sech2 
1 + �3 tanh 
1 sech2 
1 + �4 sech4 
1

�11 − 4 tanh 
1��4k1 + 11�1 − �11k1 + 4�1�tanh 
1�
, �4.8�

where �0=48 224k1�1+53 026�1
2−26 513, �1=24 112−48 224�1

2−53 026�1k1, �2=88�1k1�105�1
2−548�+26 513+14 385�1

4

−53 026�1
2, �3= �26 513−14 385�1

2��1k1−9240�1
4+24 112�1

2−12 056, �4=−44�105�1
2−137��1k1− �39 795�1

4−40 819�1
2

−40 819� /4, and

h1 = −
	4k1 − 22k2 + 11��1 − �2� + �8k2 − 11k1 + 4��1 + �2��tanh 
1
cosh 
2

��− 8k1 − 22�1 − �8�1 + 22k1�tanh 
1��11 − 4 tanh 
1�

−
	11k2 − 8k1 − 22��1 − �2� + �8k2 − 11k1 + 4��1 + �2��tanh 
1
sinh 
2

��− 8k1 − 22�1 − �8�1 + 22k1�tanh 
1��11 − 4 tanh 
1�
. �4.9�

Finally, we obtain the two-soliton overtaking solution of
the WZ equation �1.1� by substituting �4.7�–�4.9� into �4.4�
and �4.5�. In Fig. 5, the evolution of the two-soliton overtak-
ing collision is shown for the function �2. Actually, the
2N-soliton solution of the WZ system �1.1� is given when the
DT is applied 2N times.

V. CONCLUSION

We investigated the Darboux transformations of the
�1+1�-dimensional WZ equation and the 2CH system and
obtained two types of DT for �1.1� and �1.6�. For studying
the DT of the two-component CH equation, we transformed
�1.6� into �1.9�–�1.11� �whose Lax pair is almost the same as
that of �1.2�� by the reciprocal transformation and found that
�1.6� has the same DT as �1.1�. We obtained a single-loop
solution, a two-loop solution, and multisoliton �or multisoli-
tonlike� solutions of the 2CH system with the two types of
DT. We also discussed the evolutions of the two-soliton �or
two-soliton-like� solutions of w2 and v2 with different seed
solutions w0 and v0, and the evolutions of the soliton solu-
tions. When the seed solution is v0=1.2, w0=1.0 and the

wave numbers are �1=1.5, �2=−1.8, the interaction of two
solitons for v2 and w2 is inelastic because the soliton changes
shape, while the interaction of two solitons is elastic when
the seed solution is v0=1.5, w0=1.0 and the wave numbers
are �1=1.6, �2=−1.8. For the �1+1�-dimensional WZ equa-
tion, we directly obtained the bidirectional soliton solution of
�1.2� by the DT. By selecting the seed solution u=−1, v=0
which has the physical meaning of the �1+1�-dimensional
WZ equation, we derived the multisoliton solutions of �1.1�
by the first DT. We also obtained the two-soliton head-on and
overtaking collisions of the WZ equation by taking different
solutions h of the Lax pair Eq. �2.17� with different seed
solutions. These two-soliton collisions can be used to illus-
trate the bidirectional propagation of water waves in shallow
water.
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